Diciembre 2017. Volumen 13. Número 4

Medidas de impacto potencial en epidemiología (1). Medidas de impacto absolutas

Valoración: 0 (0 Votos)

Autores: Ortega Páez E, Molina Arias M.

SuscriptionSuscripción gratuita al boletín de novedades

Reciba periódicamente por correo electrónico los últimos artículos publicados

Suscribirse
Imprimir Añadir a biblioteca Comentar este artículo Enviar

|

Autores:


Correspondencia:


Introducción

En epidemiología, el estudio de la relación entre los factores de riesgo y la enfermedad puede realizarse de varias maneras. Se puede describir si la asociación es debida o no al azar con un nivel de confianza determinado, habitualmente el 95% mediante pruebas de significación. Un nivel mayor de complejidad y de información es describir la fuerza y dirección de la asociación mediante medidas de efecto o asociación, como son el riesgo relativo (RR)1 en estudios de cohortes y la odds ratio (OR)2 en estudios de casos y controles. Un nivel todavía mayor de información es describir el posible impacto potencial en la población que pudiera tener la eliminación del factor de riesgo en cuestión sobre el desarrollo de la enfermedad; son las medidas de impacto potenciales, de las que solo es posible su cálculo en diseños de prevención de enfermedad como los estudios de cohortes y casos y controles. Las medidas de impacto potenciales las podemos dividir en absolutas (MIA), cuando miden el exceso de riesgo en los expuestos en la población que se toma de referencia, y en relativas (MIR), cuando miden el porcentaje de riesgo que es debido a la exposición. Si cuantificamos el número de personas que están en riesgo o presentan el evento de interés, tenemos los números de impacto potenciales (NIP). En este documento nos dedicaremos a las medidas y números de impacto potenciales absolutos (NIPA).

Medidas de impacto potenciales absolutas en estudios de cohortes

Ya se ha comentado que son aquellas que miden el exceso de riesgo en las personas expuestas en la población de referencia. Su aplicación es de gran interés para la planificación sanitaria, ya que nos pueden dar una idea de lo que se podría obtener en beneficio de salud si se eliminara el factor de riesgo.

Con fines didácticos, para ilustrar este capítulo, utilizaremos un estudio ficticio de cohortes donde se estudia la relación entre el tabaquismo materno y el bajo peso al nacimiento durante un año, la cohorte expuesta con 230 embrazadas fumadoras y la cohorte no expuesta con 320 madres no fumadoras (tabla 1).

Tabla 1. Medidas y números de impacto absolutos en estudios de cohortes. Mostrar/ocultar

Riesgo atribuible en los expuestos (RAE) o riesgo atribuible3

Cuando la población de referencia es la expuesta. Es la diferencia absoluta de incidencia riesgo entre las personas expuestas (Ie) y las no expuestas (I0): RAE = Ie – Io. Mide la cantidad de incidencia de enfermedad que puede ser debida al factor de riesgo, en otras palabras, el riesgo de los sujetos expuestos que se debe exclusivamente a la exposición. En nuestro ejemplo sería:

$$ RAE=I_e- I_o= \frac{30}{230}- \frac{20}{320} = 0,13 - 0,062 = 0,068. $$

Si suprimimos el tabaco en las embarazadas fumadoras, evitaríamos por término medio 6,8 (redondeando 7) recién nacidos de bajo por cada 100 nacimientos en un año.

Cuando no conocemos la incidencia en los expuestos, podemos deducir el RAE desde el riesgo relativo (RR) (tabla 1):

$$ RAE = I_o (RR – 1) = 0,062 (2,09 – 1) = 0,068. $$

Riesgo atribuible poblacional (RAP)3

Cuando la población de referencia es la población general. Representa la cantidad de incidencia que puede ser atribuida al factor de riesgo en la población general. Se calcula por la diferencia de incidencias de la población general (Ip) y la incidencia de los no expuestos (Io):

$$ RPAP = I_p – I_o. $$

Lo habitual es que Ip no sea conocida, entonces se puede calcular a partir del RAE y la proporción de expuestos en la población diana del estudio (Pe): RAP = RAE × Pe. En nuestro ejemplo,

$$ RAP = 0,068 (\frac{230}{550}) = 0,28. $$

Si suprimimos el tabaco en la población general, evitaríamos aproximadamente tres recién nacidos de bajo peso cada 100 nacimientos al año.

Cálculos de los intervalos de confianza al 95%

Hasta ahora las estimaciones que hemos hecho son puntales, pero es deseable conocer los intervalos de confianza del 95% (IC 95), ya que nos van a permitir saber si los resultados pueden deberse o no al azar. Al ser diferencia de riesgos, el intervalo no debe contener el valor 0. En el caso del RAE, al ser una diferencia de riesgos, se puede calcular aplicando la fórmula de Wald para el IC 95 de las diferencias de proporciones4 y sustituyendo en la formula por los límites superiores e inferiores del IC 95 del RAE (tabla 1).

Medidas de impacto potenciales absolutas en estudios de casos y controles

Con fines didácticos utilizaremos un estudio de casos y controles donde se analiza la relación entre la infección por Helicobacter pylori (HP) y la presencia de pólipos colorrectales en niños. Se seleccionaron pacientes con pólipos colorrectales y controles sanos y se recogieron en ambos grupos los antecedentes de infecciones por HP5 (tabla 2).

Tabla 2. Medidas y números de impacto absolutos en estudios de casos y controles. Mostrar/ocultar

Riesgo atribuible en los expuestos (RAE) o riesgo atribuible3

El diseño no nos permite calcular directamente incidencias. Podemos calcular la proporción de expuestos en la población de estudio (Pe) y la incidencia en los no expuestos (Io), asumiendo que los controles son representativos de la población y que la incidencia de la enfermedad es baja (< 10%). Bajo estas circunstancias la OR se puede aproximar al RR.

El RAE se utiliza cuando la población de referencia es la expuesta. Aunque se puede calcular al igual que en los estudios de cohortes, sustituyendo el RR por la OR, es una mala aproximación (RAE = Io – OR). La mejor aproximación es la siguiente:

$$ RAE = \frac{I_o (OR-1)}{P_cte (OR-1)+1} . $$

Generalmente, la incidencia en los no expuestos no es conocida (Io); puede aproximarse por la incidencia en la población general, que puede extraerse de estudios previos recogidos en la bibliografía. Pcte representa la proporción de controles expuestos en la población de estudio.

En nuestro ejemplo:

$$ OR = \frac{20 × 61}{6 × 15} = 4,67; IC \,95: \,1,51 \,a \,14,41. $$

Supongamos que Io = 1%. Pcte = 6 / 27=0,22, sustituyendo en la fórmula:

$$ RAE = \frac{0,01 (4,67-1)}{0,22 (4,67-1)+1}= 0,0203=2,02%. $$

Si erradicamos el HP en los pacientes con infección por HP, evitaríamos por término medio 202 pólipos colónicos por cada 10 000 personas.

Riesgo atribuible poblacional (RAP)3

El cálculo se realiza al igual que en los estudios de cohortes sustituyendo la Pe por la Pcte.

$$ RAP = RAE × P_cte = 0,020 × 0,22 = 0,0044. $$

Si erradicamos el HP en la población general, evitaríamos por término medio 44 pólipos colónicos por cada 10 000 personas.

El cálculo de los IC 95 no es posible ya que no conocemos los IC de la incidencia en la población general ni de los controles expuestos.

Números de impacto potenciales absolutos en estudios de cohortes6

Para el clínico es difícil a veces poder entender las medidas de impacto que nos hablan de personas en riesgo desde un nivel general; es más intuitivo si lo traducimos a nivel individual. Por extrapolación al número necesario a tratar (NNT), que traduce el número de sujetos que se benefician o se perjudican por una intervención determinada, tenemos los números de impacto (NI), que hacen referencia al número de sujetos que se benefician o se perjudican por la exposición al factor de riesgo y que se corresponden con el recíproco de las medidas de impacto. Aportan información adicional sobre el riesgo y beneficio de las intervenciones, pueden calcularse los IC 95, pero presentan el inconveniente, al igual que los NNT, de que cuando las medidas de impacto de donde provienen no son significativas, el IC 95 es de difícil interpretación, por lo no se aconseja su uso en esos casos.

Número de impacto en los sujetos expuestos (NIE)

Es el número de individuos expuestos entre los que un caso es debido al factor de riesgo. Se calcula por el inverso RAE.

$$ NIE = \frac{1}{RAE} = \frac{1}{I_e – I_o}. $$

En nuestro ejemplo:

$$ NIE = \frac{1}{0,068} = 14,7 \simeq 15. $$

Por término medio, por cada 15 embarazadas fumadoras habrá un recién nacido de bajo peso atribuible al tabaco por año.

Número de impacto poblacional (NIP)

Es el número de personas de la población entre las que un caso es atribuible al factor de efecto. Es el inverso de la RAP.

$$ NIP = \frac{1}{RAP} = RAE × P_e. $$

En nuestro ejemplo:

$$ NIP = \frac{1}{0,028} = 35,7 \simeq 36. $$

Por término medio, por cada 36 embarazadas en la población general, una tendrá un recién nacido de bajo peso atribuible al tabaco por año.

Cálculos de los intervalos de confianza del 95%7

En el caso del NIE, el límite inferior se calcula sustituyendo el límite superior del IC 95 del RAE y el superior por el inferior (tabla 1).

Para el caso del NIP es más complejo. Podemos expresar el NIP en función del RR como sigue:

$$ NIP = \frac{1}{I_o × P_e (RR – 1)} . $$

Así, sustituyendo al igual que antes, los límites superiores por los inferiores del RR y viceversa, obtenemos los IC 95 (tabla 1).

Números de impacto potenciales absolutos en estudios de casos y controles6

Número de impacto en los sujetos expuestos (NIE)

Para el cálculo de los intervalos de confianza es mejor expresarlo en función de la OR:

$$ NIE = \frac{1}{I_o (OR – 1)} = 0,01 (4,67 – 1) = 27,2 \simeq 28. $$

Por término medio, por cada 28 personas que tienen infección por HP hay una que presenta pólipo colónico.

Número de impacto poblacional (NIP)

El cálculo se realiza a partir de Io y Pcte y OR.

$$ NIP = \frac{1}{I_o × P_cte} × (OR – 1). $$

Sustituyendo:

$$ NIP = \frac{1}{0,01} × 0,22 × (4,67 – 1) = 122,7 \simeq 123. $$

Por término medio, por cada 123 personas en la población general hay una persona con pólipo colónico atribuible a la infección por HP.

Cálculos de los intervalos de confianza del 95%7

El proceso es idéntico al visto en el estudio de cohortes pero con los intervalos de confianza de la OR, el límite inferior se sustituye por el superior de la OR y viceversa (tabla 2).

Introduction

In epidemiology, the investigation of the association between risk factors and disease can be approached in different ways. One is to determine whether the association could or could not be due to chance with a specific level of confidence, usually 95%, using tests of statistical significance. Greater complexity and additional information can be obtained by describing the strength and direction of the association through measures of effect or association, such as the relative risk (RR)1 in cohort studies and the odds ratio (OR)2 in case-control studies. Even more information can be obtained by assessing the potential impact of removing a given risk factor on the incidence of disease in the population; these are the measures of potential impact, which can only be calculated in the context of prevention studies, such as cohort and case-control studies. Measures of potential impact could be divided into absolute measures of impact (AMIs), which measure the excess risk of exposed individuals in the reference population, and relative measures of impact (RMIs), which measure the proportion of the risk that can be attributed to exposure. If we calculate the number of individuals who are at risk or in who the event of interest occurs, we obtain potential impact numbers (PINs). In this article, we will focus on absolute measures and numbers of potential impact (aPINs).

Absolute measures of potential impact in cohort studies

As noted above, these measure the excess risk of exposed individuals in the reference population. Their application is of great interest in health planning, as they can estimate the health benefits that could derive from the removal of the risk factor.

For the purpose of illustration, in this article we will use a fictitious cohort study analysing the association between maternal smoking and low birth weight over a 1-year period, with 230 smoking pregnant women in the exposed cohort and 320 non-smoking mothers in the unexposed cohort (Table 1).

Table 1. Absolute measures of impact and impact numbers in cohort studies . Show/hide

Attributable risk among the exposed (ARe) or attributable risk3

This measure is used when the reference population is the exposed population. It is the absolute difference in incidence between exposed individuals (Ie) and unexposed individuals (I0): ARe = Ie – I0. It measures the portion of the incidence of disease that is due to the risk factor, that is, the amount of risk in exposed individuals that is attributable solely to exposure. In our example, it would be:

$$ AR_e=I_e- I_o= \frac{30}{230}- \frac{20}{320} = 0,13 - 0,062 = 0,068. $$

If we removed tobacco use in pregnant women who smoke, we would prevent low birth weight in an average of 6.8 (rounding, 7) newborns per 100 births per year.

When the incidence in the exposed population is unknown, we can estimate the ARe based on the relative risk (RR) (Table 1):

$$ AR_e = I_o (RR – 1) = 0,062 (2,09 – 1) = 0,068. $$

Population attributable risk (PAR)3

Used when the reference population is the general population. It is the portion of the incidence of disease in the population that can be attributed to exposure to the risk factor in the general population. It is calculated by subtracting the incidence in the unexposed (I0) from the incidence in the total population (Ip):

$$ PAR = I_p – I_o. $$

Usually, Ip is not known, and in that case it can be calculated from the Are and the proportion of exposed individuals in the target population (Pe): PAR = ARe × Pe. In our example,

$$ PAR = 0,068 (\frac{230}{550}) = 0,28. $$

If we removed tobacco use in the general population, we would prevent low birth weight in approximately 3 newborns per 100 births per year.

Calculation of 95% confidence intervals

Until now, we have been making point estimates, but it is also advisable to calculate their 95% confidence intervals (95 CIs), as they will help us determine whether our results may or not be due to chance. Since we have calculated a difference in risk, the interval cannot contain the value of zero. In the case of the ARe, which is a risk difference, the 95% CI can be calculated using the Wald interval for the difference between proportions,4 substituting the upper and lower limits of the ARe 95% CI in the equation (Table 1).

Absolute measures of potential impact in case-control studies

For the purpose of illustration, we will use a case-control study that analysed the association between infection by Helicobacter pylori (HP) and the presence of colorectal polyps in children. The study included patients with colorectal polyps and healthy controls, and the presence of HP infection was assessed in both groups5 (Table 2).

Table 2. Absolute measures of impact and impact numbers in case-control studies. Show/hide

Attributable risk among the exposed (ARe) or attributable risk3

The case-control design does not allow the direct calculation of incidences. Alternatively, it is possible to calculate the proportion of individuals exposed in the population under study (Pe) and the incidence in the unexposed (I0), assuming that the controls are representative of the population and that the incidence of disease is low (< 10%). Under these conditions, the OR can be used to approximate the RR.

The ARe is used when the reference population is the population of exposed individuals. Although it can be calculated with the same method used for cohort studies substituting the OR for the RR, this is a poor approximation (ARe = I0 – OR). The best approximation is the following:

$$ AR_e = \frac{I_o (OR-1)}{P_ec (OR-1)+1} . $$

Usually, the incidence in the unexposed (I0) is not known, in which case it can be approximated by the incidence in the general population, which can be obtained from previous studies in the literature. Pec represents the proportion of controls that have been exposed in the population under study.

In our example:

$$ OR = \frac{20 × 61}{6 × 15} = 4,67; CI \,95: \,1,51 \,to \,14,41. $$

Let us assume I0 = 1%. Pec = 6 / 27=0.22, so entering the values in the equation gives:

$$ AR_e = \frac{0,01 (4,67-1)}{0,22 (4,67-1)+1}= 0,0203=2,02%. $$

If HP were eradicated in patients infected by HP, it would prevent an average of 202 colon polyps per 10 000 individuals.

Population attributable risk (PAR)3

It is calculated by the same method used for cohort studies, substituting Pec for Pe.

$$ RAP = AR_e × P_cte = 0,020 × 0,22 = 0,0044. $$

If HP were eradicated in the general population, it would prevent an average of 44 cases of colon polyps per 10 000 individuals.

The 95 CI cannot be calculated, as the CIs for the incidence in the general population and the incidence in exposed controls are not known.

Absolute potential impact numbers in cohort studies6

Clinicians may have difficulty understanding measures of impact that refer to individuals at risk from a general perspective, and it would be more intuitive to translate these measures to the individual level. Starting from the number needed to treat (NNT), which expresses the number of individuals that may benefit from or be harmed by a given intervention, we can derive impact numbers (INs), which refer to the number of individuals that benefit from or are harmed by exposure to a risk factor, and are given by the reciprocals of measures of impact. They provide additional information on the risks and benefits of interventions and it is possible to calculate 95 CIs for them, but they have the drawback, as does the NNT, that the 95 CI is difficult to interpret when the measures of impact they derive from are not statistically significant, which is why their use is not recommended when this is the case.

Exposure impact number (EIN)

It is the number of exposed individuals among whom one excess case is attributable to the exposure. It is given by the reciprocal of the ARe.

$$ EIN = \frac{1}{AR_e} = \frac{1}{I_e – I_o}. $$

In our example:

$$ EIN = \frac{1}{0,068} = 14,7 \simeq 15. $$

On average, for every 15 pregnant women who smoke, 1 will have a child with low birth weight attributable to tobacco use per year.

Population impact number (PIN)

It is the number of individuals in the whole population amongst whom one case is attributable to exposure to the risk factor. It is the reciprocal of the PAR.

$$ PIN = \frac{1}{RAP} = AR_e × P_e. $$

In our example:

$$ PIN = \frac{1}{0,028} = 35,7 \simeq 36. $$

On average, for every 36 pregnant women in the general population, 1 will have a child with low birth weight attributable to smoking each year.

Calculation of 95% confidence intervals7

For the EIN, the lower limit of the CI corresponds to the upper limit of the ARe CI, and the upper limit to the lower limit of the ARe CI (Table 1).

The calculation for the PIN is more complex. The PIN can be expressed based on the RR as follows:

$$ PIN = \frac{1}{I_o × P_e (RR – 1)} . $$

Having done this, the 95 CI can be obtained by substituting the lower limits of the RR CI for the upper limits of the PIN CI, and vice versa (Table 1).

Absolute potential impact numbers in case-control studies6

Exposure impact number (EIN)

In case-control studies, it is better to calculate confidence intervals based on the OR:

$$ EIN = \frac{1}{I_o (OR – 1)} = 0,01 (4,67 – 1) = 27,2 \simeq 28. $$

On average, for every 28 individuals infected by HP, 1 will have colon polyps.

Population impact number (PIN)

It is calculated from the Io, the Pec and the OR.

$$ PIN = \frac{1}{I_o × P_ec} × (OR – 1). $$

Substituting the values, we obtain:

$$ PIN = \frac{1}{0,01} × 0,22 × (4,67 – 1) = 122,7 \simeq 123. $$

On average, for every 123 individuals in the general population there is 1 individual with colon polyps attributable to infection by HP.

Calculation of 95% confidence intervals7

The method is the same one applied in cohort studies, except that in this case it is the confidence interval of the OR that is used, substituting the upper limit of the OR CI for the lower limit of the PIN CI, and vice versa (Table 2).

Cómo citar este artículo

Ortega Páez E, Molina Arias M. Medidas de impacto potencial en epidemiología (1). Medidas de impacto absolutas. Evid Pediatr. 2017;13:62.

Cómo citar (eng)

Ortega Páez E, Molina Arias M. Measures of potential impact in epidemiology (1). Absolute measures of impact. Evid Pediatr. 2017;13:62.

Bibliografía

  1. Molina Arias M, Ochoa Sangrador C. Estudios observacionales (II). Estudios de cohortes. Evid Pediatr. 2014;10:14.
  2. Molina Arias M, Ochoa Sangrador C. Estudios observacionales (III). Estudios de casos y controles. Evid Pediatr. 2014;10:33.
  3. Nieto FJ, Peruga A. Riesgo atribuible: sus formas, usos e interpretación. Gac Sanit. 1990;18:112-7.
  4. Papel de la estadística. In: Argimón JM, Jiménez J. Métodos de investigación clínica y epidemiológica. Madrid: Elsevier; 2004. p. 257.
  5. Cuestas Montañés E, Ortega Páez E. La presencia de Helicobacter pylori en pólipos colorrectales no garantiza asociación causal. Evid Pediatr. 2012;8:62.
  6. Heller RF, Dobson AJ, Attia J, Page J. Impact numbers: measures of risk factor impact on the whole population from case-control and cohort studies. J Epidemiol Community Health. 2002;56:606-10.
  7. Hildebrandt M, Bender R, Gehrmann U, Blettner M. Calculating confidence intervals for impact numbers. BMC Med Res Methodol. 2006;6:32.