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INTRODUCTION

In previous articles in this series, we have addressed how to 
assess the validity of a diagnostic test relative to a reference 
standard. If a test measures what we actually wish to measure, 
we consider it sufficiently valid to trust its results, because we 
have verified that they agree with the results of more invasive, 
expensive or unavailable tests, or with the clinical confirma-
tion of the diagnosis based on patient outcomes.1 

However, the confidence that we attribute to a diagnostic 
test does not depend solely on its validity, but also on its ac-
curacy or reliability, that is, the stability of its measurements 
when repeated under similar conditions. Reliability is a pre-
requisite to validity, for we need to know that a test is capable 
of measuring “something” before we consider assessing its 
validity. If repeated measurements of a given characteristic 
using the same instrument are inconsistent, the resulting in-
formation will not contribute anything of value to diagnosis. 
On the other hand, a test whose measurements are highly 
reliable but not valid is just as useless.

The reliability or accuracy of a test is its ability to produce the 
same results each time it is applied under similar conditions. 
Reliability implies a lack of variability. However, there are 
many sources of variability in the measurements made by 
diagnostic tests. Variability may arise from the very subject 
that is being measured (biological variability), the measuring 
instrument itself, or the observer that makes or interprets 
the measurement. One aspect that is of particular interest 
when it comes to analysing and controlling the reliability of 
diagnostic tests is the variability found in the measurements 
made by two or more observers or instruments, and the 
variability found in repeated measurements made by the same 
observer or with the same instrument.

There are various methods for assessing reliability in clinical 
measurements. The most appropriate methods for the differ-
ent type of data to be measured are the following: 1) kappa 
statistic, for discrete nominal data; 2) weighted kappa statistic, 
for discrete ordinal data, and 3) intra-rater standard deviation, 
intraclass correlation coefficient and Bland-Altman analysis 

for continuous data. In this opening article, we will discuss the 
methods used for discrete variables.

DISCRETE NOMINAL VARIABLES. KAPPA STATISTIC

The kappa statistic can be applied to tests whose results are 
limited to two possible categories or more than two catego-
ries with no hierarchical order between them. Table 1 pre-
sents the results of a blinded study in which two physicians 
interpreted the chest radiographs of 100 children with sus-
pected pneumonia (made-up data). The contingency table 
displays the counts of the cases in which the two raters 
agreed (cells a and d) or disagreed (cells b and c).

The simplest way to express agreement between the two 
assessments is to measure the percentage or proportion of 
agreement, or simple agreement (Po), which corresponds to 
the proportion of concordant observations:

Po = 
a + d
Total  =

 

4 + 80
100  

= 0.84 (84%)

An agreement of more than 84% could be interpreted as 
good; however, we must take into account that part of the 
calculated agreement may be due to chance (if the physicians 
are aware that only one out of ten patients with suspected 
pneumonia actually has the disease, they may consciously or 
unconsciously adjust their diagnoses to this frequency). The 
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Table 1. Evaluation by two physicians of the chest 
radiographs of 100 children with suspected 
pneumonia (made-up data). The cells show the 
counts of cases in which there is agreement and 
disagreement

Physician A

Pneumonia No

Physician B Pneumonia 4 6 10

No 10 80 90

14 86 100
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counts expected by chance alone for each cell in the contin-
gency table can be calculated by multiplying the marginal 
counts for the corresponding row and column divided by the 
total number of observations. Table 2 shows the calculations 
for each cell of the example in Table 1. Applying these esti-
mated counts, the proportion of agreement expected by 
chance alone would be:

Pe =
 a’ + d’

N

 
=
 

10 x 14
100

90 x 86
100+

100

 
= 1.4 + 77.4

100

 
= 0.79 (79%)

 

We can see that agreement in a high proportion of observa-
tions would result from chance alone (79%). If we exclude 
these observations from the analysis, only 5 concordant ob-
servations are left (84 – 79 = 5) out of the total of 21 (100 
– 79 = 21), which would amount to a proportion of agree-
ment not due to chance of 24% (5/21 = 0.24). If we were to 
express this calculation in terms of probabilities, instead of 
counts we would get the kappa statistic.

The kappa statistic is an estimation of the degree of agree-
ment that is not due to chance based on the observed pro-
portion of agreement (Po) and the expected proportion of 
agreement (Pe):

k = 
Po + Pe

1 – Pe

Applying this formula to our example (Table 1), we get:

k = 
Po + Pe

1 – Pe
 = 

0.84 – 0.75
1–0.75   = 0.36,

This amounts to a degree of agreement not due to chance of 
36%, which is substantially lower than the observed propor-
tion of agreement.

The kappa statistic can take on values between -1 and 1, where 1 
represents total agreement, 0 a degree of agreement equal to the 
one expected, and less than 0 a degree of agreement that is inferior 
to the one expected due to chance alone. Table 3 presents the most 
widely accepted interpretation of value ranges between 0 and 1.2,3 
As is the case of other population estimates, kappa statistics must 
be calculated with their corresponding confidence intervals.3

The kappa statistic can also be used for tests with more than 
two nominal categories, using the same method to calculate 
the expected agreement due to chance.  

DISCRETE ORDINAL DATA. WEIGHTED KAPPA STATISTIC

The weighted kappa must be used when the result of the test 
under analysis can take on more than two categorical values 
and there is some type of hierarchical order between them 
(discrete ordinal results). In this situation, there may be differ-
ent degrees of agreement or disagreement between repeated 
evaluations. Let us consider an example. Table 4 presents the 
results of two successive evaluations (test-retest) of a ques-
tionnaire designed to detect risky alcohol use in adolescents 
(made-up data). The results are expressed in three categories: 
low, intermediate, and high risk. It is obvious that the degree 
of disagreement between low and intermediate risk is not the 
same as the degree of disagreement between low and high 
risk.  

The weighted kappa statistic allows us to estimate the degree 
of agreement with a different approach to these discrepan-
cies. It is calculated by assigning a weight of 1 to complete 
agreement (100% agreement) and a weight of 0 to complete 
disagreement. Intermediate degrees of disagreement are as-
signed intermediate weights based on the significance of the 
different disagreements in the attribute under study. Thus, in 
our example, if we chose to assign a weight of 0.25 to the 
disagreement for high-intermediate risk, the result would be 
that if one rater classified the risk as high and another as in-
termediate, the degree of agreement between the two clas-
sifications would be of only 25%.  

Table 2. Estimation of the observations expected based on chance alone in the contingency table of the example (Table 1)
Physician A

Pneumonia No

Physician B Pneumonia a’ = 
10 x 14

100  
= 1.4 b’ = 

10 x 86
100  

= 8.6 10

No c’ = 
90 x 14

100  
= 12.6 d’ = 

90 x 86
100  

= 77.4 90

14 86 100

Table 3. Interpretation of kappa coefficient values
Kappa value Degree of agreement

0.81-1.00 Excellent

0.61-0.80 Good

0.41-0.60 Moderate

0.21-0.40 Fair

≤ 0.20 Poor
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The calculation of the weighted kappa statistic is similar to 
that of the kappa statistic, with the sole difference that in the 
equations the observed and expected agreement propor-
tions, the frequencies in each cell are multiplied by their re-
spective weights. Table 5 shows the weights assigned in the 
example presented in Table 4 and the calculations of the val-
ues expected by chance alone in each cell.  The observed 
proportion of agreement (Po), expected proportion (Pe) and 
weighted kappa coefficient (kw) for this example (with Po and 
Pe calculated using the values in tables 4 and 5, respectively) 
are:

Po = 
1 x (35+10+11) + 0.25 x (8+9+12+5)

100  
= 0.64

Pe = 
1 x (24.9+7.1+5.2) + 0.25 x (16.1+4.8+11+7.7)

100  
= 0.47,

kw = 
Po + Pe

1 – Pe  
= 

0.64 – 0.47
1–0.47  

= 0.32

We ought to note that estimates of agreement can change 
significantly depending on the assigned weights. One possible 
way to standardise these statistics when we do not have a 
clear hypothesis on the degree of disagreement is to use a 
weighting scheme proportional to the distance between cat-
egories: the quadratic weight. Each cell is assigned a weight 
(wi,j) equal to:

Wi,j
 
= 1 – 

i – j
k – 1( )2

,

where i is the column number in the contingency table, j the 
row number, and k the total number of categories (see Table 
6). In our example, the quadratic weight calculated with this 
formula for the midrange agreement values (high-intermedi-
ate and intermediate-low) would be 0.75. 

We ought to note that if we use these weights, the value of 
the weighted kappa statistic approximates the intraclass cor-

Table 4. Results of two successive evaluations separated by a short period of time (test-retest) of a 
questionnaire designed to detect risky alcohol use in 100 adolescents (made-up data). The results are 
expressed in three categories: low risk, intermediate risk and high risk. The cells show the count of cases in 
which there is agreement or disagreement

1st evaluation

Low risk Intermediate risk High risk

2nd evaluation

Low risk 35 12 5 52

Intermediate risk 8 10 5 23

High risk 5 9 11 25

48 31 21 100

Table 5. Weights assigned to the different degrees of agreement between evaluations (boldfaced in the upper 
right corner of each cell) and counts expected by chance in each of the cells in Table 4 (equations in each 
cell)

1st evaluation

Intermediate risk Intermediate risk Intermediate risk

2nd evaluation

Low risk

1

52 x 48
100  

= 24.9

0.25

52 x 31
100  

= 16.1

0

52 x 21
100  

= 10.9 52

Intermediate risk

0.25

23 x 48
100  

= 11.0

1

23 x 31
100  

= 7.1

0,25

23 x 21
100  

= 4.8 23

High risk

0

25 x 48
100  

= 12.0

0.25

25 x 31
100  

= 7.7

1

25 x 21
100  

= 5.2 25

48 31 21 100



Evaluation of the accuracy of diagnostic tests (1). Discrete variables Ochoa Sangrador C, et al.

TREATMENT

Page 5 to 5Evid Pediatr. 2017;13:28.

relation coefficient, which we will discuss in an upcoming ar-
ticle in this series in which we will review the measures of 
agreement for continuous variables.
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Table 6. Quadratic weights by degree of agreement
1st evaluation (k=3 categories)

Low risk
i = 1

Low risk
i = 2

Low risk
i = 3

2nd evaluation
(k =3 categories)

Low risk
j = 1

1 – 
1 – 1
3 – 1( )2

= 1 1 – 
2 – 1
3 – 1( )2

= 0.75 1 – 
3 – 1
3 – 1( )2

= 0

Intermediate risk
j = 2

1 – 
1 – 2
3 – 1( )2

= 0.75 1 – 
2 – 2
3 – 1( )2

= 1 1 – 
3 – 2
3 – 1( )2

= 0.75

High risk
j = 3

1 – 
1 – 3
3 – 1( )2

= 0 1 – 
2 – 3
3 – 1( )2

= 0.75 1 – 
3 – 3
3 – 1( )2

= 1


